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ABSTRACT
Purpose Predicting human skin permeability of chemical com-
pounds accurately and efficiently is useful for developing derma-
tological medicines and cosmetics. However, previous work have
two problems; 1) quality of databases used, and 2) methods for
prediction models. In this paper, we attempt to solve these two
problems.
Methods We first compile, by carefully screening from the liter-
ature, a novel dataset of chemical compounds with permeability
coefficients, measured under consistent experimental conditions.
We then apply machine learning techniques such as support vec-
tor regression (SVR) and random forest (RF) to our database to
develop prediction models. Molecular descriptors are fully com-
putationally obtained, and greedy stepwise selection is employed
for descriptor selection. Prediction models are internally and ex-
ternally validated.
Results We generated an original, new database on human skin
permeability of 211 different compounds from aqueous donors.
Nonlinear SVR achieved the best performance among linear SVR,
nonlinear SVR, and RF. The determination coefficient, root mean
square error, and mean absolute error of nonlinear SVR in exter-
nal validation were 0.910, 0.342, and 0.282, respectively.
Conclusions We provided one of the largest datasets with purely
experimental log kp and developed reliable and accurate predic-
tion models for screening active ingredients and seeking
unsynthesized compounds of dermatological medicines and
cosmetics.

KEY WORDS in silico prediction . quantitative structure–
property relationship . random forest . skin permeability . support
vector regression

ABBREVIATIONS
ALOGP Ghose–Crippen octanol–water partition coefficient
ANN Artificial neural network
Cd Chemical concentration in dose formulation
Jss Steady state flux of the solute
K Skin–vehicle partition coefficient
kp Permeability coefficient
L Thickness of the skin
log P Octanol–water partition coefficient
MAE Mean absolute error
MW Molecular weight
PCA Principal component analysis
QSPR Quantitative structure–property relationship
R2 Determination coefficient
RF Random forest
RMSE Root mean square error
SVR Support vector regression
SVR-G Support vector regression with Gaussian (radial basis

function) kernel
SVR-L Support vector regression with linear kernel

INTRODUCTION

The skin is the human body’s largest organ and vitally protects
the body from xenobiotic invasion. Local and systemic drugs
may also be administered through the skin. Currently,
percutaneous absorption of chemicals is measured by
various established in vivo (1) and in vitro (2) techniques. In
particular, diffusion studies of excised human skin (3), animal
skin (4), and artificial model membranes (5) have been widely
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reported; these experiments have provided excellent indica-
tions of the permeability of skin to various chemicals. The skin
permeability of a solute depends on several parameters, name-
ly, chemical concentration in dose formulation (Cd), skin–ve-
hicle partition coefficient (K), diffusion coefficient in the skin
(D), and thickness of the skin (L). The permeability coefficient
(kp) quantifies the percutaneous absorption of chemicals
through the skin defined as follows (6):

kp ¼ K ⋅D
L

¼ J ss
Cd

ð1Þ

where Jss is the steady state flux of the solute.
Measuring skin permeability of chemicals is generally time-

consuming, because optimizing experimental conditions and
building analytical methods for each chemical are also re-
quired in association with the permeation study. Moreover,
unsynthesized compounds certainly can not be evaluated.
When developing dermatological medicines and cosmetics
for external use, an efficient and accurate in silico model of
human skin permeability is useful, primarily because early-
stage screening for active skin-penetrating ingredients substan-
tially reduces product development costs. Under this back-
ground, several databases of permeability coefficients have
been established (7–14), from which researchers have devel-
oped a lot of quantitative structure–property relationship
(QSPR) models. However, there have been two problems in
previous work; 1) quality of databases used, and 2) methods
for generating prediction models.

The first problem – 1) quality of databases used – can be
subdivided into two problems further; i) database size, and ii)
uniformity of data.

i) Database size: some databases are particulary focused
on specific chemical groups (15,16), including steroids,
alcohols, and acids, resulting in around 30 compounds
for such databases. Models based on these databases
can work for predicting limited types of compounds,
but are insufficient for predicting a wider range of
chemicals.

ii) Uniformity of data: databases were frequently
compiled from data collected under different ex-
perimental conditions, such as in vitro and in vivo
conditions (7, 9–12), data using different mem-
branes (human and animal skin or artificial mem-
branes) (13), and coexisting predicted and mea-
sured data (9–12). Furthermore, absolute values
of skin permeability differ among species (1,17)
and under in vivo and in vitro conditions (18). Per-
meability can be changed by different experimen-
tal conditions, and no databases with consistent

experimental conditions currently exist. This point
casts a serious doubt whether reliable prediction
models for the skin permeability of chemicals were
built or not. A permeability dataset must be ob-
tained under consistent experimental conditions.

The second problem is methods for construction of
prediction models, i.e., QSPR models. Table I summa-
rises major existing models for predicting human skin
permeability using comparatively large databases. Most
of existing models for predicting human skin permeabil-
ity were based on linear algorithms. Linear models are
useful for interpreting the contributions of descriptors,
but their prediction ability is relatively low. For exam-
ple, the classic Potts and Guy model, which predicts the
permeability coefficient (kp) from the logarithm of the
measured octanol–water partition coefficients (log P)
and molecular weights (MW), given as follows:

log kp ¼ 0:71 log P − 0:0061 MW − 6:3 ð2Þ

Equation (2) gives 0.67 to the correlation coefficient be-
tween the observed and predicted values when the number
of compounds is 93 (19). Nonlinear models for predicting skin
permeability of chemicals were mainly artificial neural net-
works (ANNs) (20–22). ANNs are powerful and widely applied
(23), while they are likely to overfit givendata and be trapped
in local minima, and their network structures cannot be fully
determined (24,25). These difficulty and the high computa-
tional cost of optimizing parameters of ANNs are disadvanta-
geous for training the current model again, which is common-
ly required in training QSPR models when new data become
available.

On the other hand, various promising nonlinear re-
gression techniques, including support vector regression
(SVR) (26) and random forest (RF) (27), have been de-
veloped and applied to QSPR models. SVR has at least
three advantages (over ANNs): 1) unique global solu-
tions, 2) avoiding the overfitting problem, and 3) lower
computational cost. These advantages have rendered
SVR an attractive option in various research fields
(28,29). The RF algorithm assembles classification or
regression trees. This method is generally robust to the
overfitting problem and is one of the most high-
performance learning algorithms (30–32). The perfor-
mance of SVR and RF has yet to be evaluated in pre-
diction models of human skin permeability of chemicals.

In this paper, we attempt to provide solutions to the
above problems of conventional in silico models of hu-
man skin permeability. We first compiled a large dataset
of 211 structurally diverse compounds through excised
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human skin with measured permeability coefficients. All
data were collected from the literature and rigorously
screened for deriving only from in vitro diffusion studies
of excised human skin in the absence of permeation
enhancement technologies or chemicals. We then ap-
plied sophisticated machine learning techniques (SVR
and RF) to our database to develop reliable in silico
prediction models.

MATERIALS AND METHODS

Data Collection

We collected the permeability coefficients of 211 compounds
from aqueous donors in various literature reports. The dataset
of permeability coefficients, along with the data sources, is
shown in the Electronic supplementary material. The quality
of predictive models largely depends on the quality of the used

database. Ideally values should be obtained under the same
experimental conditions with the same lab setup, but one lab-
oratory could not amass a sufficiently large dataset of chemi-
cally diverse compounds. To minimize the effect of the exper-
imental environment on the database quality, we used the
data, which satisfy the following four criteria:

(a) data are obtained by an in vitro diffusion system, such as
static or flow-through diffusion cells.

(b) the diffusion membrane is excised human skin.
(c) the donor solvent is an aqueous solution containing no

organic solvents, which can affect skin permeation.
(d) no permeation enhancement technologies, such as

iontophoresis, sonophoresis, or microneedles are
used.

Some studies have reported the steady state flux and drug
concentration of the formulation instead of the permeability
coefficient. In these cases, the permeability coefficient was

Table I Previous Works

Information Analysis conditions All training Cross-
validation

Internal and external validation

1st Author Comments N 3D optimization The no. of
descriptors

Method Fitting ability Predictability Training set Test set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Potts RO (19) a few in vivo data 93 – 2 Linear 0.67 – – – – – – –

Cronin MT (63) many calculated
values

107 semi-empirical (AM1) 2 Linear 0.859 – – – – – – –

Buchwald P (64) a few in vivo data 98 unknown 3 Linear 0.723 – – – – 0.637 – 0.716

Patel H (10) many calculated
values

143 semi-empirical (AM1) 4 Linear 0.9 – – – – – – –

Lim CW (20) a few in vivo data 92 semi-empirical (AM1) 4 ANN – 0.528 – 0.669 – – – –

Abraham MH (49) – 119 – 5 Linear 0.832 – – – – – – –

Katritzky AR (21) a few in vivo data 143 semi-empirical (AM1) 5 Linear 0.8 – 0.781 – – – – –

Katritzky AR (21) a few in vivo data 143 semi-empirical (AM1) 41 Linear 0.907 – 0.812 – – – – –

Katritzky AR (21) a few in vivo data 143 semi-empirical (AM1) 4 ANN 0.812 – – 0.813 0.519 0.721 0.661

Neumann D (50) – 110 ab initio (3-21G) 3 kNN – – 0.73 – – – – –

Basak SC (65) a few in vivo data 101 ab initio (STO-3G) unknown
(PCA)

RR – – 0.729 – – – – –

Chen LJ (22) many calculated
values

<164 – 5 ANN 0.832 0.369 – – 0.841 0.365 0.792 0.386

Neely BJ (51) – 160 semi-empirical 10 ANN 0.997 0.036 – – 0.93 (training + validation +
test)

Chauhan P (11) many calculated
values

208 unknown 12 (PCA) PLS – – – – 0.755 0.518 0.936 0.267

Khajeh A (12) many calculated
values

283 semi-empirical
(PM3)

3 ANFIS – – – – 0.899 0.312 0.89 0.317

N in Analysis Conditions means the number of different compounds in the database. AM1 and PM3 in 3D optimization column represent Austin Model 1 and
Parameterized Model number 3 in semi-empirical method, respectively. 3-21G and STO-3G in 3D optimization column are among the basis set in quantum
chemical calculation. kNN, RR, PLS, and ANFIS in Method column represents k-nearest neighbor algorithm, ridge regression, partial least squares, and adaptive
neuro-fuzzy inference system, respectively
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obtained as the quotient of the steady state flux and formulat-
ed drug concentration, as specified in Eq. (1). When the per-
meability coefficients were not reported as numerical values
but shown in only diagrams, the coefficeitnts were estimated
from the diagrams.

Descriptor Generation

We generated 4803 numerical features on the three-
dimensional (3D) molecular structure of each compound
by using Dragon (v.6.0.32, Talete srl). In this step, the
geometrical structures of all chemicals were optimized
by two steps: 1) CS ChemBio3D (Ultra 13.0.2,
PerkinElmer Inc.) with its molecular mechanics (MM2)
feature, and 2) density functional theory optimization
(33) using GAMESS (34,35) with the 6-31G(d, p) basis
set and exchange potential of Becke and the correlation
functional of Lee, Yang and Parr (B3LYP) (36,37).

Descriptors contained various constitutional, topological,
molecular properties, functional group descriptors, weighted
holistic invariant molecular (WHIM), and geometry, topolo-
gy, and atom-weights assembly (GETAWAY) descriptors.
Constant (and nearly constant) descriptors were eliminated,
because they have no discriminative information. Descriptors
containing errors or missing values were also removed, finally
resulting in 2732 descriptors, which were used for model
construction.

Chemical Space (Data Visualization)

The 211 compounds in our database cannnot be easily repre-
sented visually from 2732 descriptors. We showed a 3D coor-
dinate system by observed permeability (log kp) and the first
two principal components of principal component analysis
(PCA) as a chemical space to examine the diversity of com-
pounds. PCA was implemented by the prcomp function of the
stats R package (version 3. 0. 2) (38).

Descriptor Selection

Eliminating redundant descriptors from prediction models
can reduce the practical computational cost of training the
models. In this work, essential descriptors were selected by
the method, which we call stepwise forward selection that repeats
adding one descriptor whichmost improves the determination
coefficient (R2; see Eq. (3)) for internal cross-validation of the
training set until no descriptors improve R2 by more than
0.001.

Regression with Machine Learning Algorithms

To construct prediction models that combine SVR (or
RF) with stepwise forward selection, we employed R (version
3.0.2) (38), which is widely used free software package
for statistical and data mining research. We describe
SVR and RF briefly below.

Support Vector Regression (SVR)

Support vector machine (SVM) is a classification algorithm,
which has been widely used in machine learning and in silico
prediction because of its remarkable versatility. The theory of
SVM is detailed in several excellent sources (39,40). The key
point of SVM is kernel transformation that is a projection of
the descriptor matrix from the input space onto a high-
dimensional feature space. This idea is applicable for solving
regression problems (26), and this case is called support vector
regression (SVR).

SVR is implemented by the svm function of the e1071 R
package (version 1.6–2) (41), which supports linear and non-
linear SVR. Available kernel functions are radial basis (Gauss-
ian), polynomial, sigmoid, and linear. In this study, we used
the linear and radial basis kernels (because such kernels are
standard and well used) and the option called epsilon-type
regression (eps-regression). We used default settings for all
tunable parameters in the svm function.

Random Forest (RF)

RF can be used for both classification and regression
(27). For regression, RF is an ensemble of regression
trees built from bootstrapped samples of the training
data. RF is a technique to solve high-dimensional non-
linear problems and one of the most high-performance
learning algorithms (30–32). The theory of RF is
discussed in the literature (42).

RF regression was implemented by the randomForest func-
tion in the randomForest R package (version 4.6–7) (43). We
set all tunable parameters at their default values.

Potts and Guy’s model

The most well-used prediction model of skin permeabil-
ity is the Potts and Guy model (19), which is shown in
Eq. (2) and uses the Flynn’s dataset (7). The permeabil-
ity is predicted from only two variables (MW and log P)
in this model.

We used the Potts and Guy model as a baseline
method of nonlinear QSPR models. Since log P values
were not reported for all chemicals in the dataset, all of
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them were substituted by the Ghose–Crippen octanol–
water partition coefficients (ALOGP), which can be
computed by Dragon.

Model Validation

The robustness and predictability of a QSPR model is
assessed as follows: First, descriptors were selected by
internal cross-validation, and then model predictability
was evaluated by external validation. Of the 211
chemicals, 80% were randomly selected to be used for
internal cross-validation. The remaining 20% were the
test set in external validation. We conducted internal

cross-validation by repeating 10-fold cross-validation
ten times (44–46), in which the statistical parameters
of model validity were averaged over ten iterations of
the 10-fold cross-validation.

The model performance was evaluated by three measures:
determination coefficient (R2), root mean square error (RMSE),
and mean absolute error (MAE). Note that we used R2

only for our descriptor selection. Three measures are defined
as follows:

R2 ¼ 1−

X n

i¼1
yobsi −yprdi

� �2

X n

i¼1
ð yobsi −y ̂obsÞ2 ;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
yobsi −yprdi

� �2

n
;

vuut

MAE ¼
X n

i¼1
yobsi −yprdi

��� ���
n

;

ð3Þ

where yi
obs and yi

prd are the observed and predicted log kp values,
respectively, ŷobs is the mean of the observed log kp values, and
n is the number of samples.

Furthermore for our discussion, we computed the fol-
lowing indices (47,48) which are recently used to assess

Fig. 2 Comparison of our
database with DrugBank over
molecular weight and ALOGP.

Fig. 1 Distribution of permeability (log kps) of compounds in our database.
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the validity and predictive power of the developed
QSPR models:

k ¼
X n

i¼1
yobsi yprdi

� �
X n

i¼1
yprdi

� �2 ;

k
0 ¼

X n

i¼1
yobsi yprdi

� �
X n

i¼1
yobsi

� �2 ;

R2
0 ¼ 1−

X n

i¼1
yprdi −kyobsi

� �2

X n

i¼1
ð yprdi −y ̂

prdÞ2 ;

R20
0 ¼ 1−

X n

i¼1
yobsi −k

0
yprdi

� �2

X n

i¼1
ð yobsi −y ̂obsÞ2 ;

R2
m ¼ R2 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−R2

0

q� 	
;

R2
m

0 ¼ R2 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−R2

0

0
q� 	

:

RESULTS AND DISCUSSION

Database Development

Our new database has human skin permeability data of 211
different compounds acquired from aqueous donors in vari-
ous literature reports. We emphasize that this dataset can be
one of the recent largest datasets (8,14,49–51) with purely
experimental log kp. All permeability coefficients meet the
quality criteria stated above, and therefore the prediction
models based on this new database can properly estimate
the influence of molecular structures on human skin perme-
ation. Compounds in this extensive database belong to various
chemical classes, including alcohols, amines, amides, aro-
matics, carbonyls, carboxylic acids, esters, ethers, urea, ha-
lides, nitriles, and nitro compounds. Many of the compounds
are active ingredients of pharmaceutical products, such as
anti-inflammatory, anti-cancer, anti-HIV, local anesthetic,
stimulants, and sleep-inducing drugs. Our data with perme-
ability coefficients, molecular weights and data sources
(references) are shown in the Electronic supplementary
material.

Data Visualization

The logarithm of permeability coefficients (log kp) in our da-
tabase ranges from −8.96 to −3.64 (mean=−6.25; standard
deviation=1.12), where kp is expressed in cm/s. Figure 1
summarizes the distribution of log kp. Figure 1 reveals that
log kp is well distributed like a normal distribution from
almost non-permeable values like −8.5 to highly perme-
able values like −3.5.

Molecular weights range from 32.05 to 584.73 (mean=
219.6; standard deviation=115.8), and ALOGPs range from
−6.057 to 6.835 (mean=1.603; standard deviation=1.529).
Figure 2 shows a comparison of 211 compounds in our data-
base and 211 compounds which were randomly selected from
DrugBank (52,53). Note that unlike our database, routes of
administration of the drugs in DrugBank are not particularly
limited. In Fig. 2 compounds are distributed over a 2D space
of molecular weights and ALOGP.Molecular weights of com-
pounds in our database tend to be lower than those of

Table II Coefficients of Determination (R2), Root Mean Squares Error (RMSE), and Mean Absolute Error for QSPR Models

Algorithm Type The number of descriptors Training - cross validation Test - external validation

R2 RMSE MAE R2 RMSE MAE

Potts and Guy Linear 2 – – – 0.740 0.692 0.524

SVM - Linear Linear 17 0.809 0.494 0.384 0.675 0.658 0.488

SVM - Gaussian Nonlinear 11 0.867 0.423 0.339 0.910 0.342 0.282

RF Nonlinear 9 0.856 0.448 0.341 0.884 0.390 0.319

Fig. 3 Projection of the first two principal components and the permeability
(observed log kp) for the training set (navy) and the test set (red).
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DrugBank, and this result would be due to that smaller mol-
ecules are favorable for percutaneous absorption (54). Re-
garding ALOGP, both databases incline toward lipophilic
compounds (ALOGP > 0), and especially 68% of chemical

compounds in our database are within a range from 1 to 4.
This result is consistent with the fact that drugs with log P from
1 to 4 are thought to be ideal for external use (55,56).

Figure 3 shows a chemical space, which is a 3D scatter plot
of permeability and two principal components of PCA. In this
figure, we show training (navy) and test (red) sets. Clearly, the
diversity of permeability and structural characteristics in the
training and test sets were very similar, indicating that com-
pounds assigned to the test set were almost uniformly selected
from the original chemical space. This implies that the test
compounds cover most of the structural features in the
dataset, enabling the predictability and validity of the predic-
tion models to be statistically assessed by external validation.

Prediction Models and Comparison of Different Models

In our internal cross-validation, out of the original 2732 de-
scriptors, we obtained 17, 11, and 9 descriptors by stepwise
forward selection for SVR with linear kernel (SVR-L), SVR with
Gaussian kernel (SVR-G), and RF, respectively. Table II
shows the R2 values, RMSEs and MAEs of SVR-L, SVR-G,
and RF. In Table II, SVR-G and RF showed higher R2 values
and lower RMSEs and MAEs than SVR-L, in both external
validation and internal cross-validation. Thus, the predictive
ability of SVR-G and RF was higher than that of SVR-L.
Figure 4 a, b, and c show the observed vs. predicted log kp
values for the training and test set of SVR-L, SVR-G, and
RF, respectively. As a reference, the result of the Potts and
Guy model for the test data are summarized in Table II and
plotted in Fig. 5. The predictive ability (R2=0.740) of the Potts
and Guy model was lower than those of SVR-G and RF
models. The major defect in the Potts and Guy model is that
it is composed of only two explanatory variables, which are
not completely independent. Moreover, Fig. 3 also reveals
that skin permeability (log kp) is distributed nonlinearly against
the first or second principal components. These results show

Fig. 4 (a). Predicted log kp by SVM with linear kernel vs. experimental data.
(b) Predicted log kp by SVM with Gaussian kernel vs. experimental data. (c).
Predicted log kp by RF vs. experimental data.

Fig. 5 Predicted log kp by Potts and Guy’s model vs. experimental data.
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that permeability cannot be linearly represented by the de-
scriptors used in this study.

The performance and robustness of prediction models are
an important points in QSPR studies. Golbraikh and Tropsha
(47) and Roy (48) suggested the following criteria to validate
QSPR models: A model is highly predictive if its statistical
characteristics satisfy the following conditions in external val-
idation:

0:85 ≤k≤1:15 and 0:85 ≤k0≤1:15;
R2−R2

0

R2
≤0:10 and

R2−R2
0

0

R2 ≤0:10;

R2
m ≥ 0:50 and R2

m

0
≥ 0:50 :

The statistical characteristics of the linear and nonlinear
prediction models are summarized in Table III. All statistics
of prediction models with SVR-L, SVR-G, and RF satisfy the
above three criteria, suggesting that all models in this study
can reliably predict the skin permeability of wide range of

compounds we used. Overall, SVR-G was most favorable
for predicting permeability. SVR and RF are easily construct-
ed and optimized, while the nonlinear regression perfor-
mances of SVR and RF have not been tested in the human
skin permeability predictions of chemicals. Therefore, this
study presents a new and important application of SVR and
RF.

Our database has experimental skin permeability coeffi-
cients determined from excised human skin in vitro. This data-
base does not contain calculated permeability, data from oth-
er animals and data with chemical or physical penetration
enhancement. Therefore, from this database, we can build
models that directly detect the influence of molecular struc-
tures on human skin permeability. Our high-performance
nonlinear prediction models will be reliable and useful tools
for developing dermatological ingredients.

An important aspect of QSPR research is selecting descrip-
tors for model construction. Descriptor selection can be per-
formed by numerous methods, such as stepwise selection (57),
genetic algorithms (58), ant colony optimization (59), and

Table III Statistical Parameters of External Validation for QSPR Models

Algorithm External validation

k k′ R0
2 R '0

2 R2−R2
0

R2
R2−R02

0

R2
Rm
2 R 'm

2

SVM - Linear 0.966 1.024 0.611 0.665 0.0948 0.0148 0.504 0.606

SVM - Gaussian 0.992 1.005 0.881 0.906 0.0319 0.0049 0.756 0.851

RF 0.999 0.997 0.831 0.876 0.0600 0.0090 0.680 0.807

Fig. 6 Relationship between the
number of descriptors and
predictability (R2) of internal cross-
validation in descriptor selection.
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particle swarm optimization (60). In this study, the descriptor
selection procedure is a greedy stepwise forward selection with
repeated 10-fold cross-validation. Our results show that essen-
tial and important descriptors for permeability prediction
were automatically selected to achieve high-performance pre-
diction models without selecting descriptors in advance (i.e.,
assuming no a priori relationships between the structural fea-
tures of a chemical and its skin permeability). Figure 6 shows
performance improvement by adding descriptors in our
greedy stepwise forward selection. Although the stepwise proce-
dure needs running algorithms many times, the entire proce-
dure is efficient because the model construction with SVR and
RF was computationally fast. Tables IV, V and VI show the

selected descritpors of SVR-L, SVR-G, and RF, respectively.
The importance of each of the selected descriptors for skin
permeability is somewhat unclear due to the “black box” na-
ture of the nonlinear prediction models. However, Tables IV,
V and VI reveals that most of the selected descriptors were
associated with polarity, including partition coefficients such
as log P, and molecular volume. The importance of these
descriptors for skin permeability has been pointed out in pre-
vious studies (61, 62), suggesting that distribution from the
donor aqueous solution to oily stratum corneum is a signifi-
cant factor in the percutaneous absorption process.

For the practical use of the proposed models, only three
steps are required: geometry optimization of permeants of

Table IV Selected Descriptors for the SVM Model with Linear Kernel

Name Description Block

SM1_Dz(v) spectral moment of order 1 from Barysz matrix weighted by van der Waals volume 2D matrix-based descriptors

GATS5e Geary autocorrelation of lag 5 weighted by Sanderson electronegativity 2D autocorrelations

RDF110i Radial Distribution Function - 110 / weighted by ionization potential RDF descriptors

Eig10_EA(ed) eigenvalue n. 10 from edge adjacency mat. weighted by edge degree Edge adjacency indices

Mor32s signal 32 / weighted by I-state 3D-MoRSE descriptors

B03[O-O] Presence/absence of O - O at topological distance 3 2D Atom Pairs

nRCOOR number of esters (aliphatic) Functional group counts

MATS1m Moran autocorrelation of lag 1 weighted by mass 2D autocorrelations

VE1_H2 coefficient sum of the last eigenvector from reciprocal squared distance matrix 2D matrix-based descriptors

RDF070s Radial Distribution Function - 070 / weighted by I-state RDF descriptors

RDF090i Radial Distribution Function - 090 / weighted by ionization potential RDF descriptors

RDF120s Radial Distribution Function - 120 / weighted by I-state RDF descriptors

TDB09e 3D Topological distance based descriptors - lag 9 weighted by Sanderson electronegativity 3D autocorrelations

B06[C-N] Presence/absence of C - N at topological distance 6 2D Atom Pairs

B04[C-O] Presence/absence of C - O at topological distance 4 2D Atom Pairs

G2i 2nd component symmetry directional WHIM index / weighted by ionization potential WHIM descriptors

ChiA_H2 average Randic-like index from reciprocal squared distance matrix 2D matrix-based descriptors

Table V Selected Descriptors for the SVM Model with Gaussian Kernel

Name Description Block

SM1_Dz(v) spectral moment of order 1 from Barysz matrix weighted by van der Waals volume 2D matrix-based descriptors

H3p H autocorrelation of lag 3 / weighted by polarizability GETAWAY descriptors

ALOGP Ghose-Crippen octanol-water partition coeff. (logP) Molecular properties

TDB05v 3D Topological distance based descriptors - lag 5 weighted by van der Waals volume 3D autocorrelations

DLS_05 modified drug-like score from Zheng et al. (2 rules) Drug-like indices

MATS1p Moran autocorrelation of lag 1 weighted by polarizability 2D autocorrelations

R7s R autocorrelation of lag 7 / weighted by I-state GETAWAY descriptors

Eig04_AEA(ed) eigenvalue n. 4 from augmented edge adjacency mat. weighted by edge degree Edge adjacency indices

CATS2D_06_LL CATS2D Lipophilic-Lipophilic at lag 06 CATS 2D

B05[O-O] Presence/absence of O - O at topological distance 5 2D Atom Pairs

Eta_beta_A eta average VEM count ETA indices
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interest (and in our database), generation of selected descrip-
tors (Tables IV, V and VI) based on optimized structures of
permeants, and the application of support vector regression
without parameter tuning on R to the data matrix composed
of experimental permeability coefficients and descriptors. The
proposed models require only one additional step (i.e., geom-
etry optimization) compared with earlier prediction models,
such as the Potts and Guy model, but requires the same num-
ber of steps when compared with the recent prediction models
based on the 3D structures of permeants (Table I).

CONCLUSION

We first presented a new large dataset of 211 structurally
diverse compounds with human skin permeability coefficients.
The dataset was compiled from various literature sources by
screening examples which are not obtained by in vitro diffusion
study. Therefore, this database is highly suitable for evaluating
the relationships between molecular characteristics and hu-
man skin permeability. It is potentially applicable to related
research such as vehicle effects on skin permeability by using it
combined with a dataset of skin permeability for solutions
other than water. We are working on compiling a skin perme-
ability dataset composed of a wide variety of permeants and
solvents to develop the prediction models of vehicle effects on
skin permeability in order to optimize topical formulations.

We then applied sophisticated machine learning tech-
niques (SVR-L, SVR-G and RF) to this database to develop
high-performance in silico prediction models. All SVR-L,
SVR-G, and RF were computationally fast. In both external
validation and internal cross-validation, SVR-G and RF
achieved higher performance than SVR-L. The performance
statistics between SVR-G and RF were not significantly dif-
ferent, but SVR-G was slightly better than RF. The descrip-
tors used in this work were all computationally obtained. As
with most previous prediction models such as the Potts and
Guy relationship, the proposed models are limited to the

prediction of skin permeability from aqueous donor solution,
which differs from real formulations. Nevertheless, the pro-
posed models are valuable to evaluate the potency of a wide
variety of compounds from their chemical structures, particu-
larly in early-stage screening for active skin-penetrating ingre-
dients. Overall, we provide a time- and cost-efficient approach
of screening active ingredients, and this approach is applicable
to as-yet unsynthesized compounds in dermatological medi-
cines and cosmetics.
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